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Abstract 

Early non-invasive diagnosis of Ischemic Heart Disease 

(IHD) can often be challenging. HRV features have a 

potentially important role in risk stratification for subjects 

with suspected heart disease. However, there is no 

consensus on the HRV preprocessing steps, particularly on 

how to properly treat ectopic beats. We aimed to 

investigate the performance of the models for classification 

of early IHD versus healthy subjects (HC) based on HRV 

features extracted from signals excluding ectopic beats 

and based on the same features extracted from the signals 

that contain both ectopic and normal heartbeats. This 

study encompassed 385 subjects (170 IHD and 215 HC). 

The models were produced by logistic regression method 

considering two sets of HRV features obtained by two 

preprocessing approaches. The results showed that the 

model with the input features from HRV signals including 

normal and ectopic beats presented a higher classification 

accuracy (72.7%) than the model based on features 

extracted only from normal heart beats (67.8%). In 

addition, the evaluation of the feature importance by 

analysis of produced nomograms and observed significant 

differences between features extracted with two 

preprocessing approaches, showed also that the exclusion 

of the ectopic beats modifies the features' discriminatory 

power between HC and IHD.  
 

 

1. Introduction 

The most prevalent cause of cardiovascular mortality is 

Ischemic Heart Disease (IHD) also referred to as angina 

and myocardial infarction. The condition typically occurs 

when there is an imbalance between myocardial oxygen 

supply and demand [1]. An early and accurate diagnosis of 

IHD is necessary to improve outcomes. However, 

diagnosis of IHD can often be challenging because only 

invasive, and not largely available exams can provide a 

definite diagnosis. Indeed, only coronary angiography, an 

invasive tool requiring the use of possibly toxic contrast 

means, can definitively diagnose IHD. 

There is growing research interest in the development 

of machine learning models for computer-aided diagnosis 

of different cardiopathies [2], especially those based on 

features extracted from non-invasive techniques, as heart 

rate variability (HRV) analysis.   

The changes in tonic vagal activity and sympathetic-

parasympathetic disbalance, characteristic of ischemic 

heart disease [3], can be measured by HRV [4], which 

reflects the fluctuations in beat-to-beat heart rate (RR 

interval). HRV is calculated by analyzing RR intervals 

from sinoatrial node beats, and it can be examined in a 

variety of methods, including time and frequency domain 

analyses, as well as non-linear analyses [5]. HRV can be 

utilized to assess several cardiac diseases [6, 7]. However, 

there is no consensus on the HRV preprocessing steps, that 

can potentially bring different results. One of the issues 

still debated is the inclusion of the ectopic beats in HRV 

analysis [7-13]. Some studies exclude ectopic beats from 

HRV analysis considering them biological artifacts [8] or 

irrelevant due to fact that they are not generated by 

sinoatrial nodes [9, 10]. Their exclusion, however, creates 

a challenge for interpolation of the RR intervals and can 

bias the HRV parameters [7, 11, 12], especially when these 

are caused by the cardiovascular autonomic tone changes 

[11]. Indeed, albeit still much debated, such bias and the 

inclusion of ectopic beats can potentially be relevant for 

discrimination of IHD [13]. For this reason, the inclusion 

of ectopic beats should be potentially considered in HRV 

feature extraction [14].  

Therefore, we aimed to investigate the performance of 

the models for classification of early IHD versus healthy 

subjects based on HRV features extracted from signals 

excluding ectopic beats and based on the same features 

extracted from the signals that contain both ectopic and 

normal heartbeats. 
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2. Methods 

In this study, we analyzed clinical data and processed 

ECG signals of 385 subjects. In particular, the study 

encompassed 170 patients affected by early IHD 

(125M/45F, aged 71±11 y) and 215 healthy controls 

(101M/114F, aged 58±20 y).  The assessment of IHD was 

based on clinical and laboratory findings [15]. Only early-

stage IHD were included in the study (patients without 

cardiac insufficiency symptoms or with cardiac 

insufficiency symptoms classified by New York Heart 

Association (NYHA) scale as class 1). IHD patients did not 

present acute coronary syndrome in the 3 months before 

the Holter monitoring. Patients with known trigger factors, 

such as toxic insults from alcohol or drugs, and 

tachyarrhythmias were also excluded. IHD patients were 

on beta-blocker pharmacological treatment. The exclusion 

criteria for healthy controls (HC) were the presence of 

peripheral artery disease, thyroid disorders, history of 

myocardial revascularization, hypertensive heart disease, 

pulmonary hypertension, or severe valvulopathy. The 

study was performed according to the Declaration of 

Helsinki and all patients gave written consent.  

All subjects underwent a 24h Holter ECG recording 

using the ambulatory electrocardiographic recorder 

SpiderView (Sorin Group, Italy) with a sampling rate of 

200Hz. The RR intervals were extracted and labeled by 

using SyneScope analysis software (Sorin Group, Italy). 

The RR intervals were labeled as Normal (N), premature 

ventricular contractions - ectopic beats (E), artifacts (A), 

and calibration (C). The RR interval records were cut into 

5 min segments without overlap. For each segment, in the 

case where only normal beats were considered, the RR 

intervals labeled with E were excluded. In the 

preprocessing step, only 5min segments that contain at 

least 60 beats were labeled as valid. In the case where 

ectopic beats were also considered, each RR 5 min segment 

was included in the analysis only if the longest ectopic 

beats subsequence (labeled with E) or the longest artifact 

subsequence (labeled with A) does not exceed 10s. The RR 

marked with a calibration label was ignored in both 

cases. In each case these segments were interpolated with 

cubic spline and resampled at 2 Hz, producing two 

different HRV signals. Subsequently, for each signal, and 

in each segment, linear and non-linear HRV features were 

extracted. In particular, the linear parameters MeanRR and 

SDNN related to the RR variability were calculated 

directly from the RR sequence [16], whilst in the frequency 

domain, the absolute and relative powers in low (LF=0.04 ̶ 

0.15Hz; LFn) and high (HF=0.15 ̶ 0.40Hz; HFn) frequency 

bands and their ratio (LF/HF), were estimated from the 

interpolated HRV signals (the one only with normal beats 

and the one that contains both normal and ectopic beats). 

The non-linear analysis was carried out by calculating 

Poincaré plot parameters (SD1, SD2) reflecting short and 

long-term variability [17] and extracting Fractal 

Dimension (FD) [18] quantifying the complexity of the 

system that generates the signal. Finally, the median of all 

features from valid 5 min segments during 24h were 

calculated and used as the input features for the classifier.   

The Logistic Regression (LogReg) method [19], used 

for diagnostic modeling because of its easy interpretability 

in the clinical domain, was employed to produce models 

capable of differentiating between the two groups (IHD 

and HC). The models were produced considering HRV 

features obtained from 1) signals after exclusion of ectopic 

beats (LogRegN) and 2) signals which included both 

normal and ectopic beats (LogRegNE). In both cases, the 

total number of 10 aforementioned HRV features was 

considered. The classification performance of the 

produced models was estimated using 5-fold cross-

validation. For each model we calculated the classification 

accuracy (CA), AUC, F1, precision, and recall. 

Nomograms were used to interpret the obtained logistic 

regression models. Beside the prediction, the logistic 

regression nomogram reveals the structure of the model 

and the relative impacts of the features on the class 

probability. The lengths of the lines are related to the spans 

of odds ratios, providing the information on feature 

importance. Furthermore, nomograms allow the 

computation of scores for each feature, which may be used 

to determine not only the classification outcome but also 

the class belonging probability [20]. The features that 

individually contribute at least 10 out of 100 points in the 

nomograms were plotted and considered for further 

statistical analysis.  

The HRV features represented in the nomograms 

extracted from signals excluding ectopic beats and 

obtained from signals which included ectopic beats were 
compared using the paired t-test. A p<0.05 was considered 

statistically significant. 

 

3. Results 

Classification performance of LogReg models based on 

HRV features extracted from signals after excluding 

ectopic beats and features obtained from signals which 

included normal and ectopic beats are reported in Table 1. 

The CA, AUC, F1, precision, and recall were higher in the 

model based on features that were extracted from HRV that 

included both normal and ectopic beats (LogRegNE) 

compared to the logistic regression model constructed with 

the features obtained from HRV excluding ectopic beats 

(LogRegN). 

 

Table 1. Classification performance of produced LogRegN 

and LogRegNE models 
Model AC AUC F1 Precision Recall 
LogRegN 0.678 0.714 0.677 0.677 0.678 
LogRegNE 0.727 0.810 0.725 0.726 0.727 
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The produced nomograms for LogRegNE and LogRegN 

are reported in Figure 1 and the features are listed in order 

of importance allowing to select the subset of most 

informative features. The most discriminatory features 

were SD2, SDNN, LF, HF, MeanRR, LF/HF, SD1 and 

SD2, SDNN, SD1, LF/HF, HF, MeanRR, LF for LogRegNE 

and LogRegN, respectively.  

 

Table 2. Mean±SD and comparison between LogRegN and 

LogRegNE features in HC subjects 

Features 
LogRegN LogRegNE 

p-value 
Mean±SD Mean±SD 

MeanRR 874±137 879±138 <0.001 

SDNN 66±43 69±48 0.058 

LF 1165±2386 1042±2470 <0.001 

HF 1501±4727 1681±5282 <0.001 

LF/HF 2.31±2.06 2.23±2.12 <0.001 
SD1 30±25 33±31 0.094 

SD2 82±50 82±49 0.022 

 

Mean±SD and comparison between LogRegN and 

LogRegNE features in HC and IHD subjects are reported in 

Table 2 and Table 3, respectively. All features except 

SDNN and SD1 in HC subjects (Table 2), and MeanRR 

and SD2 in IHD subjects (Table 3) were significantly 

different.  

 

Table 3. Mean±SD and comparison between LogRegN and 

LogRegNE features in IHD subjects 

Features 
LogRegN LogRegNE 

p-value 
Mean±SD Mean±SD 

MeanRR 963±151 960±149 0.807 

SDNN 81±62 88±72 <0.001 

LF 1521±2816 1406±2836 <0.001 

HF 3193±6294 4170±9693 <0.001 

LF/HF 1.22±1.09 1.10±1.13 <0.001 
SD1 40±35 46±44 <0.001 

SD2 95 ±69 97±73 0.565 

 

4. Discussion 

The main finding of this study is that the model with the 

input features extracted from RR segments with normal 

and ectopic beats, also called Heart rate total variability, 

presented higher classification performance (72.7%) in 

comparison to the model that uses features based only on 

normal heart beats (67.8%). In addition, the model based 

only on heart rate total variability features was able to 

correctly classify between early-stage IHD subjects and 

healthy subjects with moderately high accuracy. 

The nomogram revealed that the most important 

features were SD2, SDNN, LF, HF, meanRR, LF/HF and 

SD1, emphasizing that SD2 and SDNN were among the 

most discriminatory. The SD2 changes suggest activation 

of both the parasympathetic and sympathetic nervous 

systems, namely via a fast vagal response 

(parasympathetic) and the slow sympathetic response [21]. 

Indeed, the IHD stroke patients show a typical suppression 

of the SD2 of the Poincaré plot [22] that represents the 

long-term HRV changes. The SD2, related to autonomic 

nervous system dysfunction, provides additional 

information about the IHD [22], which is in line with our 

study, as the SD2 was identified by nomograms as the most 

important feature. Similar information about the 

dysfunction of the autonomic nervous system in IHD 

patients is also measurable by LF and HF parameters [22], 

that in our study takes 3rd and 4th place, in order of 

importance, in LogRegNE nomogram and 4th and 7th place 

in LogRegN nomogram.  

Furthermore, it can be observed on nomograms that the 

SD2 was invariant in case that ectopic beats were excluded 

or not. Indeed, SD2 did not differ between the two 

preprocessing approaches in the IHD group, and it should 

be preferred as a feature. The similar behavior was 

observed for meanRR, although with less discriminatory 

power. On the other hand, the different SDNN impact on 

total nomogram score in IHD’s was in line with detected 

differences of this parameter between two preprocessing 

approaches. Nonetheless the SDNN was less invariant to 

the exclusion of ectopic beats, it remained the 2nd most 

important feature. The opposite trend was observed in the 

HC group for SD2 and SDNN, suggesting that effect of the 

exclusion of ectopic beats have different influence on these 

features in two considered groups. Moreover, SD1, a 

feature that reflects the short-time HRV changes, was 

significantly different in the IHD, and not in the HC group, 

which probably caused by the increased number of ectopic 

beats in the IHDs. However, it can be observed on 

nomograms that SD1 has more discriminatory power in the 

Figure 1. Nomograms for IHD output class for (a) LogRegNE and (b) LogRegN models. Page 3



case when ectopic beats are excluded, which can be related 

to the RR interpolation [11]. LF, HF as well as LF/HF were 

statistically different between two preprocessing methods 

in both groups.  

In conclusion, our results showed that inclusion of 

ectopic beats might bring more discriminatory power and 

help to better identify between early-stage IHD and healthy 

individuals. The evaluation of the feature importance and 

the assessed differences between extracted features, 

showed also that the exclusion of the ectopic beats 

modifies the features' discriminatory power between HC 

and IHD. These findings should be confirmed in futures 

studies on a lager study sample, considering also different 

methods of ectopic beats exclusion. 
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